トライボロジー特性を劇的に変える 超短パルスレーザ加工

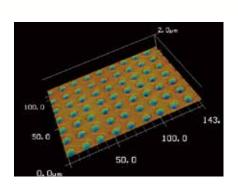
WPC処理®、DLCコーティング、有機モリブデン系高性能エンジンオイル添加剤と、フリクション低減や 耐摩耗性の向上を追求してきた㈱不二WPCとグループ企業の㈱フリクションでは、トライボロジー特性 を改善する新技術として、ピコ秒レーザ装置を導入した。この超短パルスレーザ加工および複合処理に よって、トライボロジー(摩擦・摩耗)はいかに向上するのだろうか?以下に、超短パルスレーザ加工のメ リットについて、適用事例を交えて紹介したい。

超短パルスレーザによる 表面テクスチャ形成による 摩擦・摩耗低減メカニズム

超短パルスレーザによる加工は一般 に、アブレーションが主で熱影響が少 ない。不二WPCの導入したピコ秒レー ザ装置による加工では、超硬合金 (WC)や硬質コーティング被膜など通 常の機械加工では加工の難しい材料 に、10μμ以下のディンプルが形成でき る。このディンプルによる表面テクス チャの形成によって、摩擦や摩耗が低 下するメカニズムとしては一般的に以 下が考えられている。

(1) 流体動圧効果

表面の凹凸形状の制御で、摺動2面 間の流体には正圧が発生し、摺動面を 浮上させる力が発生する。摺動面の浮


上により隙間が確保され、摩擦や摩耗 が低減される。

(2) 潤滑剤保持効果

ディンプル部に潤滑剤を保持するこ とで、潤滑剤の供給が不足する摺動条 件でも、固体接触や凝着を防ぐ。

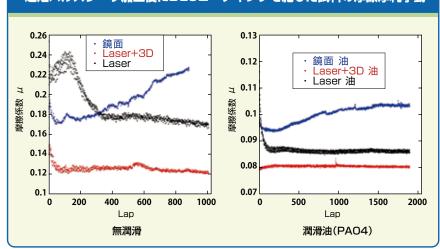
(3) 摩耗粉の捕集

摺動の過程で発生した摩耗粉をディ ンプル部に捕集することで噛み込みを

防ぎ、摩擦を低減する。

(4) 表面の濡れ性

テクスチャにより摺動方向の潤滑剤 の流動抵抗が小さくなる一方で、油は 表面張力が小さくディンプルに入り込 みそれを乗り越えて流動することが難 しいことから、ディンプルの深さが大 きくなるほど、潤滑剤の保持効果が高 まる。


レーザ加工・3Dラッピング®・DLC 複合処理によるトライボ特性の向上

上述の表面テクスチャの形成による トライボロジー特性を一層向上させる 手法として、不二WPCでは、超短パル スレーザ加工とDLCコーティングと の複合処理を提案している。

DLCコーティングは耐摩耗・低摩 擦特性を示すため、超短パルスレーザ によってテクスチャを形成した後で DLCコーティングを被覆すると、テク スチャの耐久性を高め、その特性を保 持できる。

超短パルスレーザによってディンプ ルを形成した基材にDLCを成膜した 結果、(特にレーザ加工後のバリや付 着物の除去とエッジの丸めを3Dラッ ピング®(砥粒研磨)で処理した場合: Laser+3D)では潤滑の有無によらず、 摩擦係数の大幅な低下が実現されてい る。3Dラッピング®により、スムーズ ななじみ過程後の表面状態が形成さ れ、摺動特性の向上が図られたものと 考えられる。

超短パルスレーザ加工後にDLCコーティングを施した試料の摩擦摩耗挙動

